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1. Introduction and Project Summary

This project demonstrates the feasibility of a passive tracking capability for ground-based
and airborne moving sources using multiple information streams from acoustic and seismic
signals. These moving source types are characterized by their variability with time and
distance (exemplified but not limited to the familiar doppler shift of a passing vehicle) and the
signatures used for detection should have similar characteristics. We have demonstrated
that time-varying sensor signatures (TVS) combined with time-stable sensor signatures
provide a more complete understanding of moving source behavior. Importantly, we have
collected a new, relevant LANL dataset of moving sources (small uncrewed aerial vehicle
flights and ground vehicle movement), developed new signatures, and demonstrated the
capability to identify, track and forecast the position of these moving sources.

The sensing modes for the effort included seismic and acoustic. We have leveraged the
recent DDSTE-supported investment in rapid deployable sensors (the Los Alamos
Rapid-deployable Sensor Array—LARSA), and uncrewed aerial vehicle (UAV)-based data
collection systems and equipment. We identified suitable LANL locations and source types
for the data acquisition.

The project was completed in three phases: 1) a well-planned field experiment at a testbed
to provide data for signature construction, algorithm development, and ground truth
collection for validation; 2) signature discovery–the mathematical development of features
from the acoustic and seismic source signals; and 3) the demonstration of source/target
tracking capability with the experimental data.
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The experimental testbed is located on LANL property, in a portion of Technical Area 51
(TA-51) colloquially referred to as the Pinon-Juniper (P-J) plot, where plant physiological
observations and measurements have been made regularly for many decades. The field
experiment used ground-based rapid-deployable sensors to detect general operational
activities of ground and low-altitude airborne equipment.  The uncrewed aerial vehicle (UAV)
flights executed at the TA-51 P-J plot replicated potential relevant signatures of different
airborne flight profiles of interest.  The determination of ground-based seismic and acoustic
sensor deployment locations was performed using an approach from Bayesian design of
experiment (DoE) [1,2] to optimize the usefulness of the expected signals from the selected
source locations. A suite of target/source locations/paths were identified and used to inform
the experimental design. Additionally a three element acoustic array was designed based on
the expected acoustic signature of the UAV. This array was deployed near the center of the
P-J plot and would provide data for traditional array beamforming algorithms to track the
motion of the source vehicles.

One of the greatest challenges was the construction of signatures indicative of
sources/targets movement. To overcome this difficulty, the team leveraged decades of
research experience in underground source location.  For fixed sources, a common
approach is to identify segments of transient and continuous wave time series that isolate
source information. An analogous approach was taken in this research for moving sources.
Acoustic and seismic time series were discretized over time into small segments enabling
application of fixed-source analysis methods for each segment.

Through this project, we demonstrated the ability to design and efficiently execute relevant
field campaigns with in-situ sensor deployment and complex signature generation from
ground-based and airborne sources. We have also demonstrated the capability to use three
component seismic data to differentiate between ground-based moving sources, based on
their speed. We have also demonstrated the capability to detect aerial vehicle signatures
and track them using acoustic beamforming techniques. Lastly, we have applied a
forecasting framework that will be able to predict the location of a moving source given its
current position with uncertainty.

2. Sensors and Sources
a. LARSA (sensor)
This campaign served as the first significant test of the LARSA system. LARSA was
designed to be a customizable, field-deployable sensor and data acquisition system
with the ability to perform high frequency, multi-phenomena sensor measurements
quickly and reliably. Since this study required field deployed digitizers and seismic
and acoustic sensors with simultaneous sampling rates of at least 5 kHz, this was an
ideal use case for the LARSA system.

For this measurement the digitizer was equipped with an acoustic/vibration data
acquisition module which was configured to take data at 5120 samples per second,
as well as a GPS module that provided accurate timestamps of the data.
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The deployed microphones were GRAS 146AE ½” free field microphones. These are
ruggedized research grade microphones that are waterproof and designed to survive
shocks and extreme temperatures with no degradation in sensitivity.

The deployed seismic sensors were Geospace HS-1 geophones.  These are
compact, research grade instruments that measure velocity ground motion in three
orthogonal directions (1 vertical and 2 horizontal), and have a low frequency cutoff at
2 Hz.

b. Uncrewed Aerial Vehicle (airborne source)
For low-altitude aerial vehicle signature exploitation, LANL’s Earth Systems
Observations Group (EES-14) deployed one select aircraft in its UAV fleet for this
experimental campaign. The deployed aircraft was a Gryphon Aether X8
heavy-lift-capable coaxial quadcopter (Figure 1). This aircraft has a dry weight of
12.7 kg, and is powered by four 12,000mAh lithium polymer batteries. While the
aircraft is capable of achieving a total takeoff weight (aircraft + batteries + sensor(s))
of 35.8 kg, the qualifications of the team’s pilots under the Federal Aviation
Administration’s (FAA) Part 107 small UAV piloting requirements limits the maximum
takeoff weight to 24.9 kg. Its maximum forward speed is 20 m/s. For one mission, the
aircraft carried a synthetic payload to simulate the signatures of a load-bearing flight
mission, and for comparison against the signatures detected by LARSA of the
payload-free aircraft.

Figure 1. (Left) Photo of the EES-14 Gryphon Aether X8 heavy-lift coaxial quadcopter in flight, configured
for LIDAR deployment. (Right) LANL uncrewed aerial systems (UAS) team members affix an optical
camera to the Gryphon’s payload rails for data collection.

The experienced UAV deployment team in LANL’s EES-14 group has executed
successful scientific R&D sensor deployment and data collection missions at various
locations around the continental U.S. and Alaska since 2015.  The LANL uncrewed
aerial systems (UAS) team has a track record of operational excellence at other U.S.
Government controlled sites, including the Nevada National Security Site, where the
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team has performed flight operations and data collection in support of obtaining
transient signature information for characterization of surface and subsurface
explosions.  This project provided an exciting opportunity for this team to operate
their equipment as signature and not sensor, and to design a field campaign with
realistic operational parameters for both surveillance and threat mission profiles.

c. Ground Vehicle fleet (ground-based source)
In addition to the deployment of an airborne vehicle in different flight paths, the field
campaign included deployment of a small fleet of different types of passenger
vehicles traversing a dirt road encircling the TA-51 P-J plot. This provided another
suite of data against which time- and distance-varying signature detection using
seismic and acoustic data streams could be evaluated. The vehicles deployed for the
field campaign included a 4x4 heavy-duty diesel pickup truck, a utility task vehicle
(UTV), a small passenger vehicle, and a large SUV. The vehicles traversed the road
at two different peak rates of speed and each had an onboard, portable handheld
GPS unit to establish location and timing of signals. The field team recorded start
times of each vehicle’s transit around the dirt road for signature verification.
Terrestrial vehicle signatures were recorded when the UAV was not in the air, to
reduce complexity in multi-signature discrimination.

3. Statistical Analysis for Sensor Deployment Optimization
Sensors were placed by considering the optimal location for answering a question of
interest, specifically, “where is the UAV?”. A priori, we did not expect a significant seismic
signature, so the sensor placement was optimized on the predicted acoustic signal. Because
the TA-51 P-J plot is a small area, we can assume that the atmosphere is consistent and
that acoustic waves will travel at the same rate from the UAV to the LARSA sensor,
regardless of the location of either. Therefore, the full Bayes DoE optimization technique, as
performed in other deployment scenarios (e.g., for seismic in [3]), is not necessary. Instead,
we only need to consider the distance from the sensor to the path of the UAV, with the goal
of minimizing the cumulative distance over the entire flight.

Figure 2 demonstrates this methodology.  The colored region represents the 13,015 possible
sensor locations, which are colored by their distance from the UAV integrated over the entire
flight path (gray dashed lines). We expect the UAV to be louder, and thus produce a stronger
acoustic signal, at the launch/land site (gray box) and as it rounds the corners (gray stars)
since those areas are co-located at points where the UAV will be experiencing the most
change in motor performance (to climb/descend and to make turns, respectively), thus
prioritizing placing sensors near these sites. In addition to considering the expected acoustic
sound at each location, it is also important to space the sensors to produce coverage of the
area.  Thus, for all those points with cumulative distance below a threshold, a space-filling
design was used to determine the final sensor locations. This design employs a maxi-min
approach, which adds new sensors sequentially by maximizing the minimum distance
between all existing sensors. The resulting sensor locations are shown as black circles in
Figure 2.

4



Multi-INT Signature Collection and Exploitation for Security 20210706ER

Figure 2. Demonstration of optimal sensor deployment. Colored points represent the 13,015 possible
sensor locations colored according to the cumulative distance from points of interest on the UAV flight
(dashed line). Gray box represents the launch/land site and gray stars indicate the points where the UAV
turns a corner, both of which we expect to make a larger acoustic signal. Black circles represent the eight
optimal sensor locations.

4. Field Campaign
a. LARSA deployment
In all, ten LARSA stations were deployed in the TA-51 P-J plot (Figure 3).  Eight of
the stations were located at positions determined by the statistical sensor
deployment optimization method described in Section 3a (Figure 2), and two
(numbers 122 and 127 in the figure below) were located at larger distances from the
flight paths in order to test the range of the acoustic and seismic sensors.  Each of
the stations had a Geospace HS-1 three component geophone installed along with a
GRAS 146AE 1/2'' CCP Free-field Microphone. One site (number 120) had a small
acoustic array installed. This array consisted of three of the GRAS microphones
deployed in an equilateral triangle approximately 0.5 m on each side. GPS positions
of each element were taken with a survey-grade differential GPS unit for
approximately 1 cm accuracy.
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Figure 3. Image showing the deployed locations of the 10 LARSA stations (orange triangles) at the
TA-51 Pinon-Juniper (P-J) plot. The P-J plot is roughly bounded by the rounded rectangular dirt road,
Leonard Lane Loop, at the center of the image.

b. Low-altitude aerial deployment (UAV flights)
Prior to the initiation of field operations, the flight team assembled the UAV aircraft in
a nearby laboratory and transported it to the launch-land point by vehicle. The
aircraft was initially deployed in a payload-free configuration, and operated in that
manner for most missions.

While in-field flight checks were in process at the launch/land site, the flight team
uploaded the pre-configured flight profiles to the flight controller. This ensured at
least partial autonomous operation of the UAV for some of the missions.

Seven flight missions were designed following two principal flight profiles -
surveillance and threat. The two types of surveillance flight profiles (Figure 4)
involved the aircraft following an oblique circular pattern for perimeter surveillance,
and a pre-designed boustrophedonic flight pattern, which maintained a constant
altitude, heading, and forward speed throughout the duration of the mission. The
boustrophedonic flight mission is most similar to missions previously executed by this
team for other customers [4,5,6]. The field campaign included a total of four
surveillance missions, two each at 35 m and 50 m AGL, and all at a vehicle forward
speed of 3 m/s.
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Figure 4. Two types of surveillance flight profiles flown during the field campaign. (Upper) Perimeter
surveillance pattern shown in red. (Lower) Boustrophedonic surveillance pattern shown in yellow. Arrows
indicate direction of travel of the UAV from the launch point. Both surveillance flight profiles were flown at
35 m AGL and 50 m AGL over the same path. Red dots indicate the position of the LARSA sensors.
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Five threat-oriented missions were flown in the field campaign (Figure 5), whose
flight plans were informed by relevant stakeholders at LANL (G. Andy Erickson,
GS-PROG; Don O’Sullivan, GS-NSD; and Julian Atencio, SEC-DO). All threat
profiles involved the aircraft traveling at varying altitudes and speeds, up to a
maximum vehicle forward speed of 15 m/s.

Figure 5. Maps showing the five threat-oriented flight profiles flown during the campaign. A (yellow), B
(green), and C (purple) were designed and flown in an aggressive attack style, while D (blue) and E (red)
were designed and flown for exfiltration purposes. See text for further discussion and Figure 6 for
additional detail on the D and E flight missions’ vertical profiles.

The five threat missions can be subdivided into two general profiles - aggressive
attack and exfiltration. The three aggressive-attack-style threat profiles were
designed with the aircraft initially positioned at a distal location, then approaching the
target at maximum speed and stopping rapidly (mimicking a collision or crash).  The
exfiltration-style threat profile involved the aircraft approaching a target location at
high velocity from two different positions and altitudes, rapidly decreasing in altitude
at the target location to < 5 m AGL, hovering for 15-60 seconds, then departing the
hover site at a high rate of speed while simultaneously climbing in altitude (mimicking
an approach to a location, collecting or releasing a payload, then fleeing the site)
(Figure 6).
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Figure 6. Oblique 3-D view of UAS threat flight profiles D (blue) and E (red). Each mission departed the
launch point to a distal location, returned at high velocity to a region near the launch point, rapidly
descended in altitude, hovered for a predetermined time (< 60 seconds), then departed the hover point at
high speed while climbing in altitude. Maximum altitude of profile E was 100 m AGL; maximum altitude of
profile D was 50 m AGL.

The team executing UAS operations and analyses for this campaign was as follows:
● Damien Milazzo, EES-14, mission command pilot;
● Adam Collins, EES-14, mission command pilot;
● Eric Guiltinan, EES-14, backup pilot and data analyses;
● Brandon Crawford, EES-14, backup pilot, GPS surveying, and data analyses;
● Erika Swanson, EES-14, mission planning and flight telemetry;
● Dane Coats, EES-14, GPS surveying, field support, and data analyses;
● Richard Pratt, EES-14, geospatial analyses and cartographic production.

The UAS fielding team, including the pilot cadre, includes technical subject matter
experts in geoscience, structural geology, geospatial analysis, computational
modeling, plant physiological ecology, radiation detection, and machine learning.
Having a deployment team who are scientific and technical SMEs first provides a
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foundational capability for campaign design focused on maximized technical
objectives, effectiveness and efficiency; staff that can successfully execute those
campaigns, and the same team also provides physics-informed data analyses and
interpretation to customers.

c. Ground-based vehicle deployment
Four vehicles were utilized for the ground-based vehicle tracking portion of the
measurements, including a Ford F250 heavy-duty pickup truck, a John Deere Gator
UTV, a Toyota Corolla small passenger vehicle, and a Chevy Tahoe large SUV (no
GPS data available from the Chevy Tahoe). Most vehicles were equipped with a
handheld GPS recorder to track its position as a function of time. Each vehicle was
driven twice around the Leonard Lane Loop surrounding the TA-51 P-J plot (Figure
3). For all vehicles, its first lap was completed at a slower speed (approximately 10
mph) and the second lap was completed at a higher speed (approximately 20 mph).
Ground vehicle transits did not take place contemporaneously with airborne UAV
flight operations.

d. Opportunistic natural earthquake signature detection
The LARSA-UAV field campaign was initially attempted on 30 June 2021. On that
date, LARSA was fully deployed, but airborne operations were severely limited due
to inclement weather. Two abbreviated surveillance flight missions were executed on
30 June; one was conducted payload-free and another was performed with the
aircraft carrying payload. Since not all flight missions were able to be executed on
that date, the campaign was rescheduled to 12 July. LARSA was demobilized on 1
July and returned to their storage facility for data download and maintenance.

On 12 July 2021, the team redeployed the LARSA sensors and tested their operation
prior to 09:00 local time. As the team was preparing for airborne operations, some
members of the field team identified abrupt but gentle, brief shaking similar to that of
an earthquake.  Immediate outreach to the operating technical staff of the Los
Alamos Seismic Network (LASN) identified that at around 09:35 local time, a
magnitude 4.2 mainshock earthquake occurred near the intersection of the
Nacimiento and Gallina faults northwest of Los Alamos (Figure 7).  Further analyses
showed four earthquakes associated with this event: a mainshock, a foreshock and
two aftershocks. LASN analyses showed these events were all magnitude = 2.7 or
larger, at depths of approximately 13-14 km. While the Nacimiento-Gallina area has
been seismically active for a number of years, the events of 12 July are the largest
events recorded to date in this region by LASN.
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Figure 7. Map of regional faults (black lines) in northern New Mexico. Currently operating stations of the
Los Alamos Seismic Network (LASN) shown as upright blue filled triangles; former LASN station locations
shown as inverted unfilled blue triangles. Location of Los Alamos and other major cities in northern New
Mexico labeled in green. The Nacimiento-Gallina fault junction (N-G), location of the 12 July 2021
earthquake swarm, is shown by the red arrow. Modified from [7].

While LARSA’s deployment focused on capturing the anthropogenic ground-based
and airborne source signatures from vehicles, this serendipitous deployment date
allowed LARSA to also capture robust signatures from a nearby natural earthquake
(Figure 8).
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Figure 8. Plots showing the seismic signal of the earthquake near Gallina, NM that was picked up by the
deployed LARSA sensors on 12 July 2021. Plots show the vertical component (top), North/South
component (middle), and the East/West component (bottom) of the seismic motion.

5. Data Analyses
a. Aerial flight control data
The Gryphon Aether X8 coaxial quadcopter deployed for this mission uses a DJI A3
flight controller to communicate with the operator handset, and serve as the internal
computer system. Because the flight controllers act to regulate motor speed, GPS
location, and input commands, metadata of all connected systems is stored at a
sub-second rate. In order to have a known UAV location in real time to compare to
estimated LARSA locations for the UAV, down sampling and exporting this data was
necessary. This was something the team had never previously exercised or executed
for other R&D missions.

Due to proprietary locks on DJI systems, these data are not immediately useful
without post-processing, and direct interface with the manufacturer for assistance
with data acquisition was not a viable pathway for this project. Via an exploration of
Python scripts (DROP.Py) and software, the programs DATCON and CSVView were
identified as the best ways to read these files (https://datfile.net/). DATCON takes the
raw .DAT file format taken directly from the flight controller and matches the internal
“tick” time stamps to real time GPS time and date. This simple correction moves the
internal data to a real time format, allowing for critical connections to and
comparisons with other GPS-timestamped datasets, such as the seismoacoustic
records recorded by LARSA. DATCON also preserves all metadata, as opposed to
Python scripts which eliminate many of the time- and location-related datasets.
Finally, DATCON allows for a reduction of the sample rate from up to 100 samples
per second to one sample per second, reducing the overall data burden for analysis.
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CSVView (https://datfile.net/) is another open-source software used to examine the
CSV files generated by DATCON. This can be completed in other software (Esri
ArcMap/ArcPro, Microsoft Excel) but, CSVView allows for the generating graphs and
3d spatial plots of data simultaneously, allowing for more immediate analyses of the
data. This also allowed for the deletion of data points from times when the UAV was
on the ground powered, but without the propellers spinning. This reduced file size
and dataset volume to 1/10th of their original sizes and made comparison with
LARSA data possible. The final UAV metadata were input into Esri ArcPro
(https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview) to provide final
location and GPS-timestamped data for each flown mission.

b. Seismoacoustic data analyses of aerial targets
The processing of the array data was done using the infrapy array processing tool
(see Figure 9) developed by the seismo-acoustic team in EES-17
(https://github.com/LANL-Seismoacoustics/infrapy). Infrapy is a python library
capable of waveform analysis, beamforming, and source location and association
analysis.  It was built specifically for analyzing the infrasonic signals from large
explosions, however the algorithms extend to any acoustic or seismic array analysis
with simple tweaks to the frequencies and sound speeds involved.

Figure 9. Screenshot of Infraview, the graphical frontend for infrapy. Infrapy is a python library
developed at LANL which is capable of acoustic waveform analysis, beamforming, and source
location and association analysis. This image is of the beamforming window with plots showing
(from the top): the waveform being analyzed, F-statistics, Trace velocities, and (bottom) the back
azimuths for one of the UAV flights.
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The first step in the analysis was to examine the power spectra of various drone
flights to determine the frequency range of the acoustic signals created by the UAV.
This was done by studying the Power Spectral Density (PSD) of signals measured
by the microphones in the array.  An example of one of these PSDs is shown in
Figure 10. Here you can see that the dominant frequency of the UAV’s sound is
approximately 180 Hz.  This frequency will change depending on the UAV’s speed
and acceleration. It was determined that the best range of frequencies to track using
the beamformer would be from 120 Hz to 240 Hz.

Figure 10. Plot showing an example of the Power Spectral Density of the acoustic signal created
by the UAV.  The large peak at approximately 180 Hz is the dominant frequency of the UAV and
was used to determine that the frequency range used by the beamformer should range from 120
Hz to 240 Hz.

The beamformer (in this case a standard Bartlett beamformer) examines the signals
recorded by the three microphones in the chosen frequency range, and then
determines the time difference of arrivals between them as the acoustic waves pass
over. Using the time delays, an approximation of the likely direction to the source that
created the signal can be obtained.  By breaking the signals up into 1 second
increments, this process can be repeated and the position of a moving source can be
tracked with good resolution and accuracy.

Figure 11 illustrates the developed passive tracking capability. In this movie, the
black points are the actual location of the UAV projected to a latitude and longitude
plane. The red points are the position of the UAV as provided from its onboard GPS.
The green point is the location of the acoustic array, and the blue line is the back
azimuth calculated with the beamforming algorithms. Full videos can be found here.
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Figure 11. Example of the UAV (red) and the back azimuth calculated by the beamforming
algorithm (blue line) from the mini acoustic array (green).

c. Seismoacoustic data analysis of ground targets
The seismic sensor network recorded signatures of ground vehicles that can be
distinguished from background noise from other sources. These other sources
include ground-based vehicles driving on nearby roads and aerial vehicles that were
not of interest. The seismic data also included electromagnetic (EM) interference that
manifested itself as discrete, sharp pulses roughly every ~0.16s (Figure 12) and
thereby appear as horizontal “stripes” in our spectrogram images.

We considered these narrowband data features and restricted our analyses to the
time periods when four vehicle types were driven on well-defined tracks. Ground
truth vehicle positions were established through non-uniform GPS time stamps and
compared to the approximate locations from analyzing the seismic data (Figure 13).
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Figure 12. Seismograms on station 120 deployed near the parking location of the ground based
vehicles (see Figure 3) record mechanical emissions (such as the 4x4 Ford pickup traveling at
10mph) and electrical interference that manifests as sharp spike features that give the data the
“comb” like appearance. Channel ai3 measures vertical ground velocity, ai4 measures northward
ground velocity, and ai5 measures eastward ground velocity. The vertical axis indicates
normalized velocity, and the horizontal axis indicates time.

We investigated several methods to identify either transient or emergent signatures
of ground-vehicles traffic. Initially, we found that a polarization analysis did not
perform well; this method estimates source azimuths from the eigenvectors of
covariance matrices computed from seismic ground motion. We attribute this
relatively poor performance to the EM interference, whose harmonics left residual
energy in the spectrogram data, even post-filtering. We therefore chose to normalize
our data with signal energy summed over contaminated frequencies to equally
weight time series samples that did include such interference. This process, while
very simple, did reveal that sensors recorded peak energy over a broad time when a
ground vehicle showed its point of closest approach (POCA). Figure 14 displays an
example that uses station 124 (deployment relative to GPS waypoints in Figure 13)
to illustrate the spectral peaks sourced by a small Toyota car.
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Figure 13. Ground-based vehicle tracking methods included seismic, acoustic and GPS data
(frame of movie here is shown above) that were used to develop ground truth. The purple square
denotes the current location of the Ford 4x4 pickup moving up to 20mph 190s after the
experiment began, at the 27th of 60 total location points. Triangles denote three channel
seismometers, and small squares indicate the 60 GPS position reporting points.

Figure 14. A spectrogram computed at station 124 that displays the broadband spectral energy
of a small Toyota car traveling less than 15 mph. The superimposed time series shows the
spectral energy statistic that we normalized such that the peak time series value (at = 250Hz)𝑓

corresponds to a true value of dB/Hz. Horizontal stripes in the spectrum indicate3. 8 × 10−6

electromagnetic interference from an unknown source that was not present within the acoustic
data. Text labels several features that include interference, Doppler shift, and harmonics, possibly
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from the car itself, or other road traffic. The numbers enumerate distinct peaks that associate with
the POCA of the car to the sensor that associate with our animation of car traffic (animations
illustrated here and here).

We integrated the frequency data to summarize the spectrograms with a
one-dimensional time series (which peaked for broadband sources), then detected
peaks in the time series with an energy (STA/LTA) detector. The times at these
detections provided an estimate of the time of the vehicle's POCA to a sensor. We
then associated peak detections across our network to the same source, under
reasonable assumptions on vehicle speed (e.g., a car travels more than 0mph and
less than 100mph) to form events. This effort demonstrated that such simple
analyses could detect transient, broadband spectral energy and discriminate
between vehicles at ~11mph versus ~18mph driving speeds (Figure 15 displays an
example with a Ford pickup). While this binary detection does not uniquely identify
each vehicle, it does characterize one of its operational parameters.

Multiple sensor data comparisons between GPS waypoints and integrated seismic
and acoustic spectral energy additionally suggest that coincident energy peaks in
both our seismic and acoustic data record vehicle acceleration. Therefore, waveform
energy peaks are not uniquely sourced by vehicle proximity, but are also explained
by changes in vehicle direction and speed. Features in our integrated seismic energy
absent from our integrated acoustic energy estimates indicate that if a vehicles’
proximity to a sensor remained fixed over time, the seismic noise at that station
remained elevated (Figure 16). This elevated seismic noise energy is also attenuated
quickly with sensor to vehicle distance, and such step-like changes in vehicle
distance may provide a useful metric for estimating ground vehicle proximity to a
sensor, when acceleration is largely absent.

Among our sensors, our processing demonstrates that Station 124 provided the
clearest vehicle signatures and remained crucial for our analyses. We therefore
performed a cursory analysis of the temporal coincidence of the seismic and acoustic
data at station 124. This comparison demonstrates that the square-root of the
product of the seismic and acoustic integrated energy localizes when the vehicle is at
its POCA to the sensor.
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Figure 15: Seismic analysis summary to detect and estimate the speed of a Ford 4x4 pickup
truck (hereon called “pickup”) using seismic sensors. This example shows records from stations
124 and 129 among 10 available sensors, over a truncated time duration. (a) The normalized
sum of the post-processed spectral energy along three orthogonal components of motion, for
each station. Markers indicate time series peaks at vehicle POCA to each respective sensor, and
arrows indicate their temporal separation. (b) The black curve shows the distance the pickup
traveled during this particular experiment as miles (vertical axis) versus time in hours (horizontal
axis). The markers are associated with the detection times in (a). The solid gray horizontal and
vertical lines show measurements of secant line slope and provide two estimates for the vehicle

speed between each pair of detection markers, mph and mph; dashed vertical lines𝑠 = 11 𝑠 = 18
mark the time axis limits in (a). (c) The thick curve shows the ground truth speed (vertical) of the
pickup versus recording time (horizontal axis). Red and blue markers show detection times
interpolated onto the curve. The horizontal solid gray curves show the estimates of pickup speed
from (b) over the temporal duration between detections. We note that the speed estimates are
consistent with the speed of the pickup in each interval. The dashed vertical lines mark the time
axis limits in (a).
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Figure 16: Examples of integrated seismic spectral energy over time, compared against the
distance of a vehicle from station 122 and 123. Mean energy levels are clearly elevated during
periods that the source (a Ford 4x4 pickup truck) remains in close proximity to each sensor with
limited acceleration. Conversely, acceleration events marked by highlighted bands show local
maximum in recorded energy.

20



Multi-INT Signature Collection and Exploitation for Security 20210706ER

Figure 17. A summary of seismic and acoustic signature integrated energy records for sensor
124 that recorded a Ford 4x4 pickup traveling up to 10mph around the track shown in Figure 13.
The top plot illustrates the distance of the truck from sensor 124. The middle plot superimposes
the integrated three channel seismic energy (black) with the acoustic energy (purple), and shows
their coincidence when the truck is at the POCA to sensor 124. The bottom plot shows the
square-root of the product of the seismic and acoustic energy (hybrid normalized units not shown
on the vertical axis) as a green time series. The yellow highlighted regions indicate that the
seismic and acoustic product mutes where the seismic and acoustic data are not temporally
coincident, and demonstrates where the sources produce temporally coincident signatures at the
POCA.

d. Statistical Analyses and Forecasting
A dynamic linear model (DLM), a specific case of a state space model, is a highly
flexible statistical model for time series analysis that allows relationships to vary over
time.  It consists of two components: (1) an observation equation that specifies how
the observed measurements relate to an unobserved latent state and (2) a state
equation that models how the state changes over time. Both equations incorporate
uncertainty, as both the measurements and state evolution are distorted by noise.
The two equations, together with a prior distribution on the initial state, completely
specifies the model [8]. Once specified, the Kalman filter can be used to update the
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inference on the state as new data becomes available, which in turns allows for
prediction of the observations through the observation equation, e.g., tracking a
moving object between successive time points [9].

The work of [10] adopts the Kalman filter approach to a track-while-scanning
operation. It assumes the measurements are the range and bearing from a radar
sensor, but predicts the Cartesian coordinate location of an object through
conversion from polar coordinates. The state vector consists of the location of the
object as well as the velocity in two directions and also includes a parameter for the
acceleration of the object. The Kalman filter approach has been extended to the
3-dimensional case where elevation angle is incorporated, in addition to range and
bearing. This 3-dimensional extension creates nonlinearity in the observation
equations and modifications must be made to the simple Kalman filter estimation
formulation [11,12]. Although not demonstrated here, extending the Kalman filter to
forecasting UAV elevation (AGL) is part of future work.

Applying the track-while-scanning Kalman filter method assumes that the data is in
the form of range, r, and bearing, θ. The beamformer approach of Section 5b,
produces a back azimuth from the acoustic signal, which can be used as θ.  To
obtain values for r, the GPS data collected from the drone can be used with a simple
conversion. The GPS data can also be used as an alternative method to inputting the
position bearing.

The results in Figures 18 and 19 show the one-step ahead prediction, as the mean of
the posterior distribution from the Kalman filter for mission 1 (the top plot of Figure
11).  The first plot shows the prediction when the bearing is estimated from the GPS
coordinates. For a portion of the time steps the one-step ahead prediction aligns with
the true location of the UAV.  However, the code fails to predict any locations to the
left of the sensor location (indicated by the red dot in the center of the plot).
Understanding why this phenomenon is occurring is a part of future research. The
predictions in the second plot are not more accurate and indicate an implausible
drone path that jumps around the scene. Again, understanding why the algorithm
does not predict a smoother path is an area of opportunity for this work. Figures 18
and 19 are displayed as GIFs where ten one-step ahead predictions are added at a
time and can be viewed here.

22

https://drive.google.com/drive/folders/1inGuZeQMkOYG2zqhkfjip36NmqYL9Lh8?usp=sharing


Multi-INT Signature Collection and Exploitation for Security 20210706ER

Figure 18. Prediction of UAV location using the GPS from the UAV flight controller to compute the range
and bearing. The filled in circles are the ground truth, the stars are the predicted values, and color
corresponds to the time, so points go from dark to light as time passes. There is a corresponding ground
truth and prediction for each color.  The methodology does not predict to the left of the sensor (red dot).

Figure 19. Prediction of UAV location using the GPS from the UAV flight controller to compute the range
and the computed back azimuth for the bearing. The filled in circles are the ground truth, the stars are the
predicted values, and color corresponds to the time, so points go from dark to light as time passes. There
is a corresponding ground truth and prediction for each color.  There is no discernible pattern.
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Figure 20 compares the estimated bearing from the UAV GPS signal to the back
azimuth computed with the beamformer approach of Section 5b, where each point
represents the estimated θ at a particular point in time. The linear section in the
middle of the plot indicates that the predictions from both methods follow a similar
pattern; however, the areas to the left and right of the linear section indicate a shift in
one or both estimation methods.  Again, this discrepancy provides an opportunity to
learn more about the Kalman filter approach and how best to replicate a
track-while-scan operation with acoustic measurements.

Figure 20. Comparison of the bearings when computed from the back azimuth (x-axis) to that computed
from the GPS location (y-axis). Each point represents one point in time.

6. Discussion and Conclusions
A. Experiment Design and Execution
We demonstrated the ability to design a relevant and applicable field campaign at a local
LANL site, and execute the sensor and source deployments effectively and efficiently. As
the team expands its UAV fleet, future studies could test detection and discrimination of
multiple UAVs in flight, and evaluate potential for detection of multiple airborne targets.
Future work could also be performed against other sites of interest, including explosives
testing sites where a wider variety of large ground vehicles are in use. Additionally,
conducting additional data collections at testbeds with increased background noise
would help to identify the signal-to-noise thresholds of the LARSA sensors in detecting
signals of UAVs and specific vehicle types in heavy industrial and civil infrastructure
areas.

B. Statistical Analysis for Sensor Deployment Optimization
We demonstrated the ability to determine sensor location to specifically address a
question of interest using the expected signal from a particular modality. For this work,
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we used the acoustic signal to directly localize the UAV at all points in the UAV’s flight
with an increased emphasis on the locations where the acoustic signal is likely to be
more prevalent, i.e., the take-off and landing location and the turns along the flight path.
This approach assumed a constant acoustic velocity and therefore optimization occurred
with respect to the distance. This approach differs from previous sensor deployment
optimizations because the source is moving and thus sensor placement must be
optimized while also integrating over the entire expected path. In addition, a space filling
approach was also employed to ensure the area of operation was sufficiently covered.

An important methodological development that could be addressed with the data
collected in this study is how to optimize sensor deployment with multiple modalities. The
deployment scenario considered only acoustic signals, but a model could be built with
the collected seismic and acoustic data to predict the expected signal at multiple
locations, and a joint optimization for both modalities could be conducted. Future studies
could be conducted in areas of more challenging terrain to more comprehensively
evaluate the role played and sensitivity imparted by topography in this study’s sensor
deployment optimization. In addition, this data could be used to address the question of
how many sensors is enough for (1) detection and (2) path forecasting?

C. Acoustic detection and screening of airborne vehicles
We demonstrated that an acoustic array can provide valuable and accurate
tracking information for airborne vehicles.  Traditional beamforming techniques were
able to track the UAV as it moved through the P-J plot and were capable of providing
accurate back azimuth information at distances approaching 100 meters.  The algorithm
used assumes a single target so at points the tracking left the UAV and seemed to track
vehicles passing by on the nearby Pajarito Road corridor.  Future work would include
multiple arrays with higher numbers of elements, as well as the use of more complex
algorithms to separate multiple targets, or to better separate targets from background
noise.

D. Seismoacoustic detection and screening of ground based vehicles
We demonstrated an ability to use a seismic network of three channel seismometers to
detect the point of closest approach of ground-based vehicles (Figure 14) and estimate
their average speeds. The strength of the signal from the sensor data was variable
across the network; in particular, certain stations (124) provided much better records of
vehicle traffic than others (e.g., 128). In addition, our high frequency sensors were
contaminated with electromagnetic interference (Figure 13) that challenged polarization
analysis that could better track the direction of arrival of these vehicles; however,
understanding how to adapt this methodology to cope with the interference is an
opportunity for future work. Our data also reveal other features that include Doppler shift
below 300Hz from variable sources, and their harmonics. We did not attempt to identify
these energy sources. Importantly, we can identify passenger vehicles among these
various energy sources and amongst interference, categorize such vehicles by speed
(Figure 15), and count the number of times they pass each sensor on the track. We
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conclude that we can calculate basic traffic parameters from three channel seismic data,
using routine processing methods, and that these estimates agree well with ground truth
derived from GPS data.

7. Impacts
Detecting, identifying and tracking a target with active interrogation (e.g. radar) is a
well-established technology - both in terms of sensing technology and algorithms.
However, active interrogation always provides a signal that can be used to locate the
interrogator system. Single targets can generate a signal that might be observed
passively.  These signals include electromagnetic signals from an engine/motor,
chemical/gas signatures and mechanical waves. Electromagnetic signals are often
embedded into complex background noise signals, and while chemical/gas signals
provide invaluable information, attributing these signals to a target can be difficult due to
complex propagation paths.  Propagation of seismic and acoustic waves, observed
within approximately 200 kilometers between target and interrogator, is not as
complicated. These mechanical waves can be guided by geology and topography,
however if the path between a target and interrogator is direct and somewhat
homogeneous, then such signals might be exploited to form a passive interrogation
tracking system.  In this project, we have demonstrated, at a small scale, the viability of
such a system for a single isolated target.  Algorithms and associated sensing systems
for passive detection/identification/tracking are relevant to diverse national security and
military missions, law enforcement, and facility protection. Needed seismic and acoustic
sensors are inexpensive and with the development of mature algorithms, a passive
seismo-acoustic tracking system could provide a cost-effective option for target
detection, identification and tracking.
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ACRONYMS AND DEFINITIONS
3-D three-dimensional
AGL above ground level
CCS Computer, Computational, and Statistical Sciences Division
CSV comma-separated values
dB decibel
DoE Design of Experiment
DDSTE Deputy Directorate for Science, Technology, and Engineering
DLM dynamic linear model
EES Earth and Environmental Sciences Division
EM electromagnetic
FAA Federal Aviation Administration
GIF graphics interchange format
GPS Global positioning system
GS-NSD Global Security – National Security and Defense Program Office
GS-PROG Global Security Program Office
Hz Hertz
INT Intelligence
kg kilogram
kHz kilohertz
LANL Los Alamos National Laboratory
LARSA Los Alamos Rapid-Deployable Seismoacoustic Array
LASN Los Alamos Seismic Network
LIDAR light detection and ranging
mAh milliamp hours
mph miles per hour
m/s meters per second
NM New Mexico
P-J TA-51 Pinon-Juniper Plot
POCA point of closest approach
PSD power spectral density
SEC-DO Security Division
STA/LTA short-term averaging/long-term averaging
SUV sport utility vehicle
TA-51 Technical Area 51
TVS Time-varying signatures
UAS Uncrewed aerial system; an aircraft plus one or more payload components
UAV Uncrewed aerial vehicle; aircraft only
UTV Utility task vehicle
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